Programme of "Chimica delle superfici e delle interfasi":		
"Chemistry of Surfaces and Interfaces"		
• Code: 10/39		
• level of course unit: Second Cycle		
• year of study 1st year, semester: 1st		
Number of ECTS credits: 6 (workload is 150 hours; 1 credit = 25 hours)		
Teacher: Giulia Fioravanti (giulia fioravanti@univaq.it)		
		The goal of this course is to give candidates the fundamental knowledge of physical/chemistry of interface phenomena. Specific objectives are the principles and the application of different
1	Course objectives	characterization techniques and the principles of surface functionalization.
		importance of processes that occur at interfaces, and to give examples of the applications of surface chemistry and the functionality of materials
		Topics of the module include:
		Introduction on the states of matter. The gaseous state. The condensed states: solid, liquid.
		The technique of vacuum. Vacuum levels; Ultra High Vacuum (UHV).
		Fundamentals of surface phenomena. Type of interphases and its features. Surface tension:
		determination in liquids and solids. Elements of thermodynamics of surfaces and interfaces.
		Young equation
		Models of interphase. The surface phase approach The excess surface approach: the Gibbs
		surface.
		Adsorption. Physical and chemical adsorption. Adsorption models: isotherms (BET).
		Chemisorption. Adsorption from solution. Amphiphilic adsorption.
		measurements Hysteresis Surface roughness Wenzel Cassie
		Surfaces Characterization Techniques. Structural characterization: morphology, defects,
		thickness.
		Microscopic Characterization. Optical and Fluorescence microscopy. Electron microscopy
		Sectroscopic characterization 11V-Visible Spectroscopy (R-Raman spectroscopy X-ray
2	Course content and	photoemission spectroscopy (XPS). Auger electron spectroscopy (AES).
	Learning outcomes (Dublin descriptors)	Modification of surfaces. Deposition of thin and thick films. Physical Vapor (PVD) and Chemical
	(Vapor Deposition (CVD). Deposition from solution. Drop casting, spin coating, dip coating and Langmuir- Blodgett films. Lithographic techniques: Photolithography and Soft- lithography.
		Self -assembled monolayers (SAM). Formation and properties. Defects, stability and
		on surface: wettability gradients.
		On successful completion of this module, the student should:
		- have profound knowledge of the concept of surface energy to study capillary phenomena;
		- have knowledge and understanding of physical and chemical adsorption at interfaces
		solid/gas and solid/liquid,
		- recognize properties of the interface between two different material phases and understand the
		- understand and explain surface analysis at the micro- and nano-scale
		- understand the fundamentals of vacuum techniques,
		- have profound knowledge of thin films and self-assembling monolayers,
		 - demonstrate skill in surface cleaning protocols and ability to modify surface properties. - demonstrate capacity for reading and understand other texts on related topics.
3	Prerequisites and	The student must know the basic knowledge of General and Inorganic Chemistry and
	learning activities	Chemical Thermodynamics.
		Lectures, laboratory experiments.
4	Teaching methods	Ref. Text books
	and language	"An Introduction to Interfaces & Colloids: The Bridge to Nanoscience" - J. C. Berg, Publisher:
		World Scientific (ISBN: 978-981-4299-82-4).
5	Assessment methods	Oral exam, short report on a research article related to a topic of the course, laboratory report.
	and criteria	