6.1 Le funzioni reali di variabile reale.

6.1.1. Osservazione. Siano R \subseteq A×B e S \subseteq A×B due relazioni tra gli (stessi) insiemi A e B.

Ovviamente, le due relazioni R e S (in quanto sottoinsiemi di $A \times B$) sono uguali (R = S) se e solo se:

$$R \subseteq S$$
 et $S \subseteq R$

ovvero se e solo se per ogni (a, b)∈ A×B

$$((a, b) \in R \implies (a, b) \in S)$$
 et $((a, b) \in S \implies (a, b) \in R)$

ovvero se e solo se per ogni $(a, b) \in A \times B$

$$(aRb \Rightarrow aSb)$$
 et $(aSb \Rightarrow aRb)$

Tenendo conto dell'ultima condizione si ha la seguente

6.1.2. Osservazione. Date due funzioni $f: A \rightarrow B$ e $g: A \rightarrow B$ si ha che

$$f = g \iff \forall a \in A \ f(a) = g(a)$$

Ovvero, *due funzioni* f e g definite su di uno stesso insieme A e a valori in uno stesso insieme B *sono uguali* se e solo se per ogni elemento a di A si ha che la sua immagine f(a) tramite f è uguale alla sua immagine g(a) tramite g.

6.1.3. Definizione. Se $I \subseteq R$ allora $f: I \to R$ si dice *funzione reale di variabile reale definita in I*.

Col simbolo $\mathfrak{I}_{I}(R)$ indicheremo l'insieme delle funzioni reali di variabile reale definite in I.

- **6.1.4. Osservazione**. Si noti che se $I \subseteq J \subseteq R$ allora $\mathfrak{I}_R(R) \subseteq \mathfrak{I}_J(R) \subseteq \mathfrak{I}_J(R)$.
- **6.1.5. Definizione**. Col simbolo e indicheremo la funzione di $\Im_{I}(R)$ così definita:

$$\forall x \in I \ e(x) = 0 \in R.$$

6.1.6 Definizione. Per ogni $f \in \mathfrak{I}_I(R)$ col simbolo (-f) indicheremo la funzione $\mathfrak{I}_I(R)$ così definita:

$$\forall x \in I \quad (-f)(x) := -f(x) \in R$$

6.1.7. Osservazione. Siano f, $g \in \mathfrak{I}_I(R)$. Per ogni $x \in I$ è <u>univocamente</u> (poiché la somma di due numeri reali è un'operazione binaria ovunque definita ed interna a R) determinato il numero reale f(x) + g(x). Quindi, possiamo definire <u>univocamente</u> una funzione $h \in \mathfrak{I}_I(R)$ nel modo seguente:

$$\forall x \in I \quad h(x) := f(x) + g(x)$$

Per l'osservazione precedente è ben posta la seguente:

6.1.8. Definizione. Sia $+: \Im_I(R) \times \Im_I(R) \to \Im_I(R)$ l'operazione binaria ovunque definita ed interna a $\Im_I(R)$ definita nel modo seguente:

$$\forall f, g \in \mathfrak{I}_{I}(R)$$
 $f + g := h$

dove per ogni $x \in I$ si ha che h(x) := f(x) + g(x). Quindi, (f + g)(x) = f(x) + g(x).

Possiamo, ora, provare il seguente

6.1.9 Lemma. La coppia $(\mathfrak{I}_{\mathsf{I}}(\mathsf{R}), +)$ è un gruppo abeliano.

Dimostrazione. Tenendo conto delle proprietà del campo R si prova facilmente che:

(G1)
$$\forall f, g, h \in \mathfrak{I}(R)$$
 (f $+ g$) $+ h = f + (g + h)$

Infatti, per ogni x∈ I si ha che

$$((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x) =$$

$$= f(x) + (g(x) + h(x)) = (f(x) + (g + h)(x)) = (f + (g + h))(x)$$

$$(G2) \, \exists e {\in} \, \mathfrak{I}_I(R) \quad \forall f {\in} \, \mathfrak{I}_I(R) \qquad \qquad f \, \bigstar \, e = f = e \, \bigstar \, f$$

Infatti, per ogni x∈ I si ha che

$$(f + e)(x) = f(x) + e(x) = f(x) + 0 = f(x) = 0 + f(x) = e(x) + f(x) = (e + f)(x)$$

f + (-f) = e = (-f) + f

(G3) $\forall f \in \mathfrak{I}_I(R) \quad \exists (-f) \in \mathfrak{I}_I(R)$

$$(f + (-f))(x) = f(x) + (-f)(x) = f(x) + (-f(x)) = 0 = e(x)$$

$$((-f) + f)(x) = (-f)(x) + f(x) = -f(x) + f(x) = 0 = e(x)$$

(G4)
$$\forall f, g \in \mathfrak{J}_I(R)$$
 $f + g = g + f$

Infatti, per ogni x∈I si ha che

$$(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)$$

6.1.10. Osservazione. Siano $\alpha \in R$ e $f \in \mathfrak{I}_I(R)$. Per ogni $x \in I$ è <u>univocamente</u> (poiché il prodotto di due numeri reali è un'operazione binaria ovunque definita ed interna a R) determinato il numero reale $\alpha f(x)$. Quindi, possiamo definire una <u>univocamente</u> una funzione $h \in \mathfrak{I}_I(R)$ nel modo seguente:

$$\forall x \in I \quad g(x) := \alpha f(x)$$

Per l'osservazione precedente possiamo dare la seguente

6.1.11. Definizione. Sia \times : R× $\mathfrak{I}_I(R) \to \mathfrak{I}_I(R)$ l'operazione l'operazione binaria ovunque definita tra uno scalare e una funzione reale di variabile reale definita in I a valori in $\mathfrak{I}_I(R)$ così definita:

$$\forall \alpha \in \mathbb{R}$$
, $\forall f \in \mathfrak{I}_{I}(\mathbb{R})$ $\alpha \times f := g$

dove per ogni $x \in I$ si ha che $g(x) := \alpha f(x)$. Quindi, $(\alpha \times f)(x) = \alpha f(x)$

Possiamo, ora, provare il seguente

6.1.12. TEOREMA. La terna $(\mathfrak{I}_{I}(R), +, \times)$ è uno spazio vettoriale reale.

Dimostrazione. Abbiamo già provato che $(\mathfrak{I}_{I}(R), +)$ è un gruppo abeliano.

Tenendo conto delle proprietà del campo R si prova facilmente che:

$$(PS1) \forall \alpha \in R, \forall f,g \in \Im_{I}(R)$$

$$\alpha \times (f + g) = (\alpha \times f) + (\alpha \times g)$$

Infatti, per ogni $x \in I$ si ha che

$$(\alpha \times (f + g))(x) = \alpha(f + g)(x) = \alpha(f(x) + g(x)) = (\alpha f(x)) + (\alpha g(x)) =$$

$$= (\alpha \times f)(x) + (\alpha \times g)(x) = ((\alpha \times f) + (\alpha \times g)))(x)$$

(PS2)
$$\forall \alpha, \beta \in \mathbb{R}$$
, $\forall f \in \mathfrak{I}_{I}(\mathbb{R})$

$$(\alpha + \beta) \times f = (\alpha \times f) + (\beta \times f)$$

Infatti, per ogni x∈ I si ha che

$$\begin{split} ((\alpha + \beta) \bigstar f)(x) &= (\alpha + \beta)(f(x)) = (\alpha f(x)) + (\beta f(x)) = \\ &= (\alpha \bigstar f)(x) + (\beta \bigstar f)(x) = ((\alpha \bigstar f) \bigstar (\beta \bigstar f)))(x) \end{split}$$

$$(PS3) \forall \alpha, \beta \in \mathbb{R}, \forall f \in \mathfrak{I}_{I}(\mathbb{R})$$

$$(\alpha\beta) \times f = \alpha \times (\beta \times f)$$

Infatti, per ogni $x \in I$ si ha che

$$((\alpha\beta) \times f)(x) = (\alpha\beta)(f(x)) = \alpha(\beta f(x)) = \alpha((\beta \times f)(x))) = (\alpha \times (\beta \times f))(x)$$

$$(PS4) \forall f \in \Im_{I}(R)$$

$$1 \times f = f$$

Infatti, per ogni x∈ I si ha che

$$(1 \times f)(x) = 1f(x) = f(x)$$

6.2 I vettori liberi.

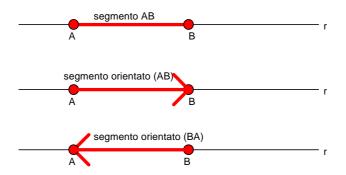
Siano \wp ed \Re rispettivamente l'insieme dei punti e quello delle rette dello spazio euclideo.

6.2.1. Definizione. Siano $r, s \in \Re$ due rette <u>complanari</u>. Diremo che <u>r</u> è <u>parallela</u> ad s, e scriveremo $r /\!/ s$, se r ed s coincidono ($r \equiv s$) o non hanno alcun punto in comune ($r \cap s = \emptyset$), in quest'ultimo caso diremo anche che le rette r ed s sono parallele in <u>senso stretto</u>.

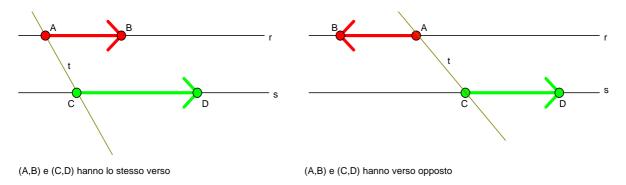
Consideriamo la relazione in \Re (detta di parallelismo) così definita $// = \{(r, s) \in \Re \times \Re \mid r // s\}$.

- **6.2.2. Osservazione**. E' facile verificare che quella di parallelismo è una relazione di equivalenza.
- **6.2.3. Definizione**. Chiamiamo direzione di una retta r la classe di equivalenza $[r]_{//} = \{s \in \Re \mid s // r\}$.
- **6.2.4. Osservazione**. Tenendo conto della proprietà (CE2) (vedere Lemma 3.7) delle relazioni di equivalenza si ha che **due rette hanno la stessa direzione se e solo se sono parallele**.
- **6.2.5. Definizione**. Dati due punti <u>distinti</u> A e B diremo *direzione del segmento* AB la direzione della (unica) retta r passante per A e B. Inoltre, <u>stabiliamo</u> che il segmento nullo AA abbia la stessa direzione di ogni altro segmento (cioè sia parallelo ad ogni altro segmento).
- **6.2.6. Osservazione**. Due segmenti <u>non nulli</u> hanno la stessa direzione se e solo se si trovano su due rette parallele.

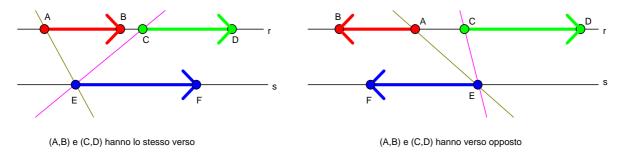
6.2.7. Definizione. Dato un segmento AB di estremi A e B distinti $(A \neq B)$, esistono due e solo due coppie ordinate distinte (A, B) e (B, A), che chiameremo *versi del segmento*. Indicheremo con (AB) il segmento di verso (A, B) e con (BA) il segmento di verso (B, A).



6.2.8. Definizione. Siano r ed s <u>due rette parallele in senso stretto</u>. Siano A e B due punti distinti di r e C e D due punti distinti di s. Sia π il piano individuato da r ed s e sia t la retta di π passante per A e C. La retta t divide il piano π in due semipiani. Se i punti B e D appartengono allo stesso semipiano, allora diremo che (AB) e (CD) hanno lo *stesso verso*. Altrimenti, diremo che hanno *verso opposto*.



6.2.9. Definizione. Sulla <u>stessa retta</u> r siano A, B, C e D quattro punti tali che A \neq B e C \neq D. Sia s una retta parallela in senso stretto a r e siano E ed F due punti distinti di s tali che (AB) ed (EF) abbiano lo stesso verso. Se (CD) e (EF) hanno lo stesso verso, allora diremo che anche (AB) e (CD) hanno lo <u>stesso verso</u>. Altrimenti, diremo che hanno <u>verso opposto</u>.



Se (AB) e (CD) hanno la stessa direzione (cioè sono paralleli), allora scriveremo:

- vers(AB) = vers(CD) se hanno lo stesso verso
- vers(AB) = vers(CD) se hanno verso opposto

6.2.10 Definizione. Stabiliamo che il segmento nullo abbia lo stesso verso di ogni altro segmento.

Indichiamo con Σ l'insieme {(AB) | A,B $\in \emptyset$ } e lo chiamiamo *insieme dei segmenti orientati*.

6.2.11. Definizione. Comunque presi due segmenti orientati (AB) e (CD) di Σ , diremo che (AB) è *equipollente* a (CD), e scriveremo (AB) \approx (CD), se (AB) e (CD) hanno la stessa lunghezza, la stessa direzione e lo stesso verso. Il sottoinsieme $\{((AB), (CD)) \in \Sigma \times \Sigma \mid (AB) \text{ è equipollente a (CD)}\}$ è una relazione in Σ che chiamiamo *relazione di equipollenza* e indichiamo col simbolo \approx .

6.2.12. Osservazione. E' facile verificare che quella di equipollenza è una relazione di equivalenza.

6.2.13. Definizione. Chiamiamo <u>insieme</u> dei vettori liberi , e lo indichiamo con V, l'<u>insieme</u> quoziente Σ_{\approx} . Quindi, un <u>vettore libero</u> è una <u>classe di equivalenza</u> rispetto alla relazione di equipollenza (talvolta anche detta classe di equipollenza).

6.2.14 Osservazione. Due segmenti orientati (AA) e (BC) sono equipollenti se e solo se B = C.

6.2.15. Definizione. Chiameremo *vettore libero nullo*, e lo indicheremo col simbolo $\stackrel{\rightarrow}{0}$, la classe di equivalenza individuata da un qualsiasi segmento nullo. Quindi, $\stackrel{\rightarrow}{0} = \{(AA) \mid A \in \mathcal{D}\}.$

6.2.16. Definizione. Se $\overrightarrow{u} = [(OA)]_{\approx}$, allora il segmento orientato (OA) viene detto rappresentante di \overrightarrow{u} applicato in O.

(OA) è un rappresentante del vettore libero u

Tenendo conto di come è definita la relazione ≈ di equipollenza è ben posta la seguente

6.2.17. Definizione. Diremo *lunghezza*, *direzione* e *verso di un vettore libero* rispettivamente la lunghezza, la direzione e il verso di un suo qualunque rappresentante.

 $\text{Indicheremo con } \| \vec{u} \| \text{ la lunghezza del vettore libero } \vec{u} \text{ . Ovviamente, } \| \vec{u} \| = 0 \Leftrightarrow \vec{u} = \overset{\rightarrow}{0} \text{ .}$

6.2.18. Teorema. (esistenza ed unicità del rappresentante applicato in un fissato punto)

Per ogni punto $O \in \mathcal{D}$ e per ogni vettore libero $u \in V$ <u>esiste</u>, ed è <u>unico</u>, un punto $A \in \mathcal{D}$ tale che $(OA) \in u$, ovvero $[(OA)]_{\approx} = u$. In altre parole, per ogni punto O dello spazio e per ogni vettore libero O esiste un unico rappresentante di O applicato in O.

Dimostrazione. Se $\stackrel{\rightarrow}{u} = \stackrel{\rightarrow}{0}$ allora A coincide con O. Se $\stackrel{\rightarrow}{u} \neq \stackrel{\rightarrow}{0}$ allora sia r l'<u>unica</u> retta passante per O e avente la stessa direzione di $\stackrel{\rightarrow}{u}$ (cioè la stessa direzione di un suo rappresentante). Sia X un punto di r distinto da O tale che il segmento orientato non nullo (OX) abbia lo stesso verso di u (cioè lo stesso verso di un suo rappresentante). Sull'<u>unica</u> semiretta per O e X chiamiamo A l'<u>unico</u> punto tale che la lunghezza del segmento OA è uguale alla proprio alla lunghezza del vettore u (cioè alla lunghezza di un suo rappresentante).

Il segmento orientato (OA) ha la stessa lunghezza, direzione e verso di \overrightarrow{u} . Quindi, (OA) $\in \overrightarrow{u}$.

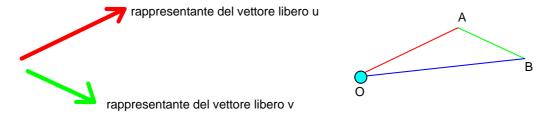
Il segmento orientato (OA) è l'unico rappresentante del vettore libero u applicato nel punto O. ■

Dal precedente teorema segue subito il

6.2.19. Corollario. Dati tre punti O, A, B $\in \mathcal{D}$ si ha che $[(OA)]_{\approx} = [(OB)]_{\approx} \Leftrightarrow A = B$.

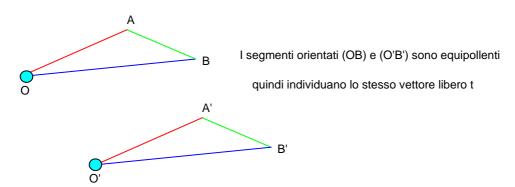
6.2.20. Algoritmo "S". Comunque presi due vettori liberi u e v si effettuino i seguenti passi:

- (1) si scelga, <u>a piacere</u>, un punto $O \in \wp$;
- (2) sia $A \in \mathcal{O}$ l'unico (per il teorema 6.2.18) punto dello spazio tale che $[(OA)]_{\approx} = u$;
- (3) sia B $\in \mathcal{D}$ l'unico (per il teorema 6.2.18) punto dello spazio tale che $[(AB)]_{\approx} = v$;
- \rightarrow (4) sia t il vettore libero individuato dal segmento orientato (OB), cioè t := [(OB)]_{\infty}



6.2.21. Osservazione. L'algoritmo precedente determina <u>univocamente</u> il vettore libero \overrightarrow{t} .

Infatti, anche se al passo (1) scegliessimo un punto O' \neq O (e quindi si avrebbe, in generale, A' \neq A e B' \neq B) è facile rendersi conto che sarebbe (O'B') \approx (OB), per cui alla fine [(O'B')] $_{\approx}$ = [(OB)] $_{\approx}$.



Tenendo conto dell'osservazione precedente è ben posta la seguente

6.2.22. Definizione. Sia $[+]: V \times V \to V$ l'operazione binaria ovunque definita ed interna a V così definita:

$$\overrightarrow{u}$$
 [+] \overrightarrow{v} := \overrightarrow{t}

dove \overrightarrow{t} è il vettore libero ottenuto con l'*algoritmo* "S" applicato ai vettori liberi \overrightarrow{u} e \overrightarrow{v} . Quindi, si ha che $[(OA)]_{\approx}[+][(AB)]_{\approx}:=[(OB)]_{\approx}$.

6.2.23. Lemma. La coppia (V, [+]) è un gruppo abeliano.

Dimostrazione. Dobbiamo provare che valgono (G1), (G2), (G3) e (G4).

$$(\mathbf{G1}) \ \forall \ \mathbf{u} \ , \ \mathbf{v} \ , \mathbf{w} \in \mathbf{V} \quad (\mathbf{u} \ [+] \ \mathbf{v} \)[+] \ \mathbf{w} = \mathbf{u} \ [+](\mathbf{v} \ [+] \ \mathbf{w} \)$$

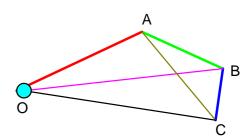
Siano u, v, $w \in V$. Si scelga, a piacere, $O \in \mathcal{D}$. Sia $A \in \mathcal{D}$ l'unico punto tale che $[(OA)]_{\approx} = u$. Sia

 $B \in \mathcal{B}$ l'unico punto tale che $[(AB)]_{\approx} = v$. Sia $C \in \mathcal{B}$ l'unico punto tale che $[(BC)]_{\approx} = w$.

rappresentante del vettore libero w

rappresentante del vettore libero u

rappresentante del vettore libero v



$$\xrightarrow{\rightarrow} \xrightarrow{\rightarrow} (u \ [+] \ v \)[+] \ w = ([(OA)]_{\approx} \ [+] \ [(AB)]_{\approx}) \ [+] \ [(BC)]_{\approx} = [(OB)]_{\approx} \ [+] \ [(BC)]_{\approx} = [(OC)]_{\approx}$$

$$\textbf{(G2)} \; \exists \; \overset{\rightarrow}{0} \in V : \forall \; \vec{u} \in V \quad \vec{u} \; [+] \; \overset{\rightarrow}{0} = \vec{u} = \overset{\rightarrow}{0} \; [+] \; \vec{u}$$

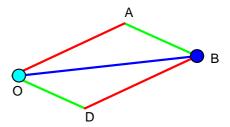
Sia $u \in V$. Si scelga, a piacere, $O \in \mathcal{D}$. Sia $A \in \mathcal{D}$ l'unico punto tale che $[(OA)]_{\approx} = u$. Si ha che O = U O =

(G3)
$$\forall \vec{u} \in V \ \exists \overset{\rightarrow}{u'} \in V : \vec{u} [+] \overset{\rightarrow}{u'} = \overset{\rightarrow}{0} = \overset{\rightarrow}{u'} [+] \vec{u}$$

Sia $\overrightarrow{u} \in V$. Si scelga, a piacere, $O \in \mathcal{D}$. Sia $A \in \mathcal{D}$ l'unico punto tale che $[(OA)]_{\approx} = \overrightarrow{u}$.

Siano u, $v \in V$. Si scelga, a piacere, $O \in \mathcal{D}$. Sia $A,B \in \mathcal{D}$ gli unici punti tali che $[(OA)]_{\approx} = u$ e che $O \in \mathcal{D}$. Sia $O \in \mathcal{D}$ l'unico punto tale che la figura OABD è un parallelogrammo.

rappresentante del vettore libero u

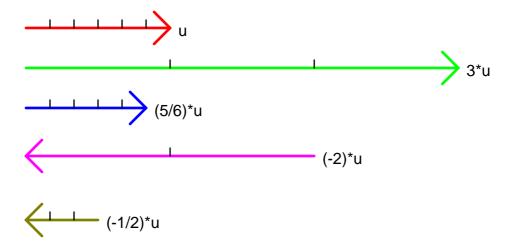


rappresentante del vettore libero v

Poiché (DB) \approx (OA) e (OD) \approx (AB) si ha che $[(DB)]_{\approx} = [(OA)]_{\approx} = u$ e $[(OD)]_{\approx} = [(AB)]_{\approx} = v$. Quindi, $\rightarrow \rightarrow \rightarrow u$ [+] $v = [(OA)]_{\approx} [+]$ $[(AB)]_{\approx} = [(OB)]_{\approx} = [(OD)]_{\approx} [+]$ $[(DB)]_{\approx} = v$ [+] $[(DB)]_{\approx} = v$ [+]

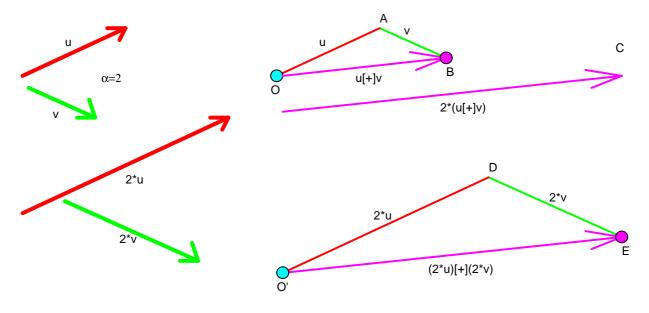
6.2.24. Definizione. Sia * : $R \times V \to V$ l'operazione binaria ovunque definita in $R \times V$ a valori in V definita nel modo seguente: $\forall \alpha \in R$, $\forall u \in V$

- se $\alpha = 0$ vel u = 0 allora $\alpha^* u := 0$;
- se $\alpha \neq 0$ et $u \neq 0$ allora α^*u è il vettore libero avente lunghezza $\|\alpha^*u\| := (|\alpha|)\|u\|$, la stessa \rightarrow direzione di u e verso uguale a quello di u se $\alpha > 0$ aut opposto a quello di u se $\alpha < 0$.



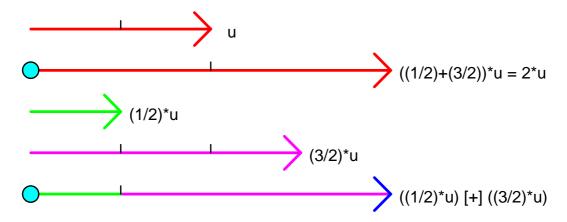
Si può provare (noi faremo solo degli esempi) che valgono le seguenti proprietà:

6.2.25. Esempio. Siano \vec{u} e \vec{v} i vettori liberi rappresentati dai segmenti orientati rosso e verde e sia $\alpha = 2$. Si vede che il vettore libero $2^*(\vec{u}[+]\vec{v})$ è uguale al vettore libero $(2^*\vec{u})[+](2^*\vec{v})$.



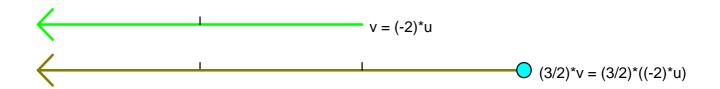
$$(\textbf{PS2}) \ \forall \alpha, \beta \in R \ , \ \forall \ u \in V \\ (\alpha + \beta)^* \ u = (\alpha^* \ u \) \ [+] \ (\beta^* \ u \)$$

6.2.26. Esempio. Sia \vec{u} il vettore libero rappresentato dal segmento orientato rosso. Siano α =1/2 e β =3/2. Si vede che il vettore libero $(1/2+3/2)^*$ \vec{u} è uguale al vettore libero $((1/2)^*$ \vec{u})[+]((3/2)* \vec{u})



$$(\textbf{PS3}) \ \forall \alpha, \beta \in R \ , \ \forall \ u \in V \\ (\alpha\beta)^* \ u = \alpha^*(\beta^* \ u \)$$

6.2.27. Esempio. Sia \vec{u} il vettore libero rappresentato dal segmento orientato rosso. Siano α =3/2 e β =-2. Si vede che il vettore libero $((3/2)(-2))^*\vec{u}$ è uguale al vettore libero $(3/2)^*((-2)^*\vec{u})$



Inoltre, è immediato verificare che

$$(\mathbf{PS4}) \ \forall \ \mathbf{u} \in \mathbf{V}$$
 1* $\mathbf{u} = \mathbf{u}$

Ricordando (Lemma 6.2.23) che (V, [+]) è un gruppo abeliano, abbiamo provato il seguente:

6.2.28 TEOREMA. La terna (V, [+], *) è uno spazio vettoriale reale.

6.3 Le n-uple ordinate di numeri reali.

Siano R il campo dei numeri reali e Rⁿ l'insieme delle n-uple ordinate di numeri reali.

Ricordiamo che due n-uple ordinate di numeri reali

$$(a_1, a_2, a_3, ..., a_{n-1}, a_n)$$
 e $(b_1, b_2, b_3, ..., b_{n-1}, b_n)$

sono uguali se e solo se

$$a_1 = b_1$$
, $a_2 = b_2$, $a_3 = b_3$, , $a_{n-1} = b_{n-1}$, $a_n = b_n$

ovvero, se e solo se hanno gli stessi elementi negli stessi "posti".

6.3.1. Osservazione. Date due n-uple ordinate di numeri reali

$$(a_1, a_2, a_3, ..., a_{n-1}, a_n)$$
 e $(b_1, b_2, b_3, ..., b_{n-1}, b_n)$

per ogni $i \in \{1, 2, 3, ..., (n-1), n\}$ è univocamente determinato il risultato dell'operazione $a_i + b_i$.

Quindi, è anche <u>univocamente</u> determinata la n-upla ordinata di numeri reali seguente:

$$(a_1+b_1,\,a_2+b_2,\,a_3+b_3,\,\ldots,\,a_{n-1}+b_{n-1},\,a_n+b_n).$$

Tenendo conto dell'osservazione precedente è ben posta la seguente:

6.3.2. Definizione. Sia \oplus : $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ l'operazione binaria ovunque definita ed interna a \mathbb{R}^n definita nel modo seguente: $\forall (a_1, a_2, a_3, ..., a_{n-1}, a_n), (b_1, b_2, b_3, ..., b_{n-1}, b_n) \in \mathbb{R}^n$

$$(a_1, a_2, a_3, ..., a_{n-1}, a_n) \oplus (b_1, b_2, b_3, ..., b_{n-1}, b_n) := (a_1 + b_1, a_2 + b_2, a_3 + b_3, ..., a_{n-1} + b_{n-1}, a_n + b_n)$$

6.3.3. Esempio. In
$$\mathbb{R}^4$$
 si ha che $(2, 4, -7, \frac{1}{2}) \oplus (5, -6, 3, -1) = (7, -2, -4, -\frac{1}{2})$

6.3.4. Lemma.La coppia (R^n, \oplus) è un gruppo abeliano.

Dimostrazione. Tenendo conto delle proprietà del campo R si prova facilmente che:

$$\forall (a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n), (c_1, c_2, ..., c_n) \in \mathbb{R}^n$$

(G1) ⊕ è associativa, cioè

$$((a_1, a_2, ..., a_n) \oplus (b_1, b_2, ..., b_n)) \oplus (c_1, c_2, ..., c_n) = (a_1, a_2, ..., a_n) \oplus ((b_1, b_2, ..., b_n) \oplus (c_1, c_2, ..., c_n))$$

- (G2) la n-upla ordinata nulla (0, 0, 0, ..., 0, 0) è l'elemento neutro rispetto a [+]
- (G3) la n-upla $(-a_1, -a_2, -a_3, ..., -a_{n-1}, -a_n)$ è il simmetrico della n-upla $(a_1, a_2, a_3, ..., a_{n-1}, a_n)$
- (G4) \oplus è commutativa, cioè $(a_1, a_2, ..., a_n) \oplus (b_1, b_2, ..., b_n) = (b_1, b_2, ..., b_n) \oplus (a_1, a_2, ..., a_n)$

6.3.5. Osservazione. Data una n-upla ordinata di numeri reali $(a_1, a_2, a_3, ..., a_{n-1}, a_n)$ e un numero reale α per ogni i = 1, 2, 3, ..., (n-1), n è univocamente determinato il risultato dell'operazione αa_i . Quindi, è anche univocamente determinata la n-upla ordinata di numeri reali seguente:

$$(\alpha a_1, \alpha a_2, \alpha a_3, ..., \alpha a_{n-1}, \alpha a_n).$$

Tenendo conto dell'osservazione precedente è ben posta la seguente:

6.3.6. Definizione. Sia \otimes : R×Rⁿ \rightarrow Rⁿ l'operazione binaria ovunque definita tra uno scalare e una n-upla ordinata di numeri reali a valori in Rⁿ definita nel modo seguente:

$$\forall \alpha \in R$$
, $\forall (a_1, a_2, a_3, a_{n-1}, a_n) \in R^n$ $\alpha \otimes (a_1, a_2, a_3, ..., a_{n-1}, a_n) := (\alpha a_1, \alpha a_2, \alpha a_3, ..., \alpha a_{n-1}, \alpha a_n)$

6.3.7. Esempio.
$$2 \otimes (2, 4, -7, \frac{1}{2}) = (4, 8, -14, 1); (-\frac{3}{4}) \otimes (8, 0, 12, -40) = (-6, 0, -9, 30)$$

Tenendo conto che R è un campo, si prova che: $\forall \alpha, \beta \in \mathbb{R}, \forall (a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \in \mathbb{R}^n$

$$(PS1) \quad \alpha \otimes ((a_1, a_2, ..., a_n) \oplus (b_1, b_2, ..., b_n)) = (\alpha \otimes (a_1, a_2, ..., a_n)) \oplus (\alpha \otimes (b_1, b_2, ..., b_n))$$

(PS2)
$$(\alpha + \beta) \otimes (a_1, a_2, ..., a_n) = (\alpha \otimes (a_1, a_2, ..., a_n)) \oplus (\beta \otimes (a_1, a_2, ..., a_n))$$

(PS3)
$$(\alpha\beta)\otimes(a_1, a_2, ..., a_n) = \alpha\otimes(\beta\otimes(a_1, a_2, ..., a_n))$$

(PS4)
$$1 \otimes (a_1, a_2, ..., a_n) = (a_1, a_2, ..., a_n)$$

Ricordando (Lemma 6.3.4) che (\mathbb{R}^n , \oplus) è un gruppo abeliano, abbiamo provato il seguente:

6.3.8. TEOREMA. La terna (R^n, \oplus, \otimes) è uno spazio vettoriale reale.

6.4 Le matrici di uno stesso (fissato) ordine ad elementi reali.

Indichiamo con R^n l'insieme delle n-uple ordinate di numeri reali. In 6.3., dopo aver introdotto un'operazione \oplus di "somma" tra due n-uple reali e un'operazione \otimes di "prodotto" tra un numero reale e una n-upla reale, abbiamo visto che la terna (R^n, \oplus, \otimes) è uno spazio vettoriale reale. Qui indicheremo brevemente con R^n lo spazio vettoriale reale (R^n, \oplus, \otimes) .

Siano $a_1, a_2, a_3, ..., a_{(m-1)}, a_m$ m elementi di R^n , cioè m n-uple ordinate di numeri reali.

$$\mathbf{a_1} = (\mathbf{a_{11}}, \, \mathbf{a_{12}}, \, , \, \mathbf{a_{1n}})$$

$$\mathbf{a_2} = (a_{21}, a_{22}, , a_{2n})$$

$$\mathbf{a_3} = (a_{31}, a_{32}, , a_{3n})$$

.

$$\mathbf{a}_{(\mathbf{m-1})} = (a_{(m-1)1}, a_{(m-1)2}, , a_{(m-1)n})$$

$$\mathbf{a_m} = (a_{m1}, a_{m2}, , a_{mn})$$

Consideriamo una m-upla ordinata che contenga tali n-uple come elementi, cioè

$$(a_1, a_2, a_3, ..., a_{(m-1)}, a_m)$$

ovvero

$$((a_{11}, a_{12}, a_{1n}), (a_{21}, a_{22}, a_{2n}), (a_{31}, a_{32}, a_{3n}), \dots, (a_{(m-1)1}, a_{(m-1)2}, a_{(m-1)n}), (a_{m1}, a_{m2}, a_{mn}))$$

6.4.1. Definizione. Diremo *matrice di tipo m×n ad elementi reali* ogni m-upla ordinata avente come elementi n-uple ordinate di numeri reali.

6.4.2. Esempio.
$$A = ((2,3,0), (1,-7,4))$$
 è una matrice di tipo 2×3 . $B = ((4,5,1), (1,1,1), (0,0,-2))$ è una matrice di tipo 3×3 . $C = ((1,2,3,4), (11,-4,-4,9), (-6,0,8,0))$ è una matrice di tipo 3×4 .

6.4.3. Osservazione. Ovviamente, una matrice è una (mn)-upla. Ma è anche "qualcosa di più".

Di solito una matrice di tipo $m \times n$ viene **rappresentata** con una tabella rettangolare di m righe e n colonne in modo tale che gli n elementi della i-esima riga siano proprio gli n elementi della i-esima n-upla ordinata a_i .

$$\mathbf{A} = \begin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \\ \mathbf{a_{(m-1)}} \\ \mathbf{a_m} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1(n-1)} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} & \dots & a_{2(n-1)} & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{34} & \dots & a_{3(n-1)} & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{(m-1)1} & a_{(m-1)2} & a_{(m-1)3} & a_{(m-1)4} & \dots & a_{(m-1),(n-1)} & a_{(m-1)n} \\ a_{m1} & a_{m2} & a_{m3} & a_{m4} & \dots & a_{m(n-1)} & a_{mn} \end{bmatrix}$$

In tal modo si ha che il numero reale \mathbf{a}_{ij} che si trova nella i-esima riga e j-esima colonna della matrice (che diremo *elemento di posto ij*) è il j-esimo elemento della i-esima n-upla ordinata.

6.4.4. Esempio. Usando questa nuova rappresentazione scriveremo

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & -7 & 4 \end{bmatrix}$$
 invece di
$$A = ((2,3,0), (1,-7,4))$$

$$B = \begin{bmatrix} 4 & 5 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
 invece di
$$B = ((4,5,1), (1,1,1), (0,0,-2))$$

$$C = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 11 & -4 & -4 & 9 \\ -6 & 0 & 8 & 0 \end{bmatrix}$$
 invece di
$$C = ((1,2,3,4), (11,-4,-4,9), (-6,0,8,0))$$

Per brevità, spesso scriveremo $A = [a_{ij}]_{m \times n}$ per indicare una tabella rettangolare di m righe ed n colonne contenente come elementi dei numeri reali.

6.4.5. Definizione. Col simbolo M(m, n, R) indicheremo l'insieme contenente tutte e sole le matrici di tipo $m \times n$ ad elementi reali. In pratica $M(m, n, R) = (R^n)^m$.

6.4.6. Osservazione. Siano
$$A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_{(m-1)} \\ a_m \end{bmatrix}$$
 e $B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_{(m-1)} \\ b_m \end{bmatrix}$ due matrici ad elementi reali dello

stesso tipo m×n. Per ogni indice $i \in \{1, 2, 3, ..., (m-1), m\}$ di riga è <u>univocamente</u> determinata in R^n la n-upla ordinata $\mathbf{a_i} \oplus \mathbf{b_i}$ risultato dell'operazione \oplus tra le due n-uple ordinate $\mathbf{a_i}$ e $\mathbf{b_i}$.Quindi, è

anche <u>univocamente</u> determinata la matrice $\begin{bmatrix} a_1 \oplus b_1 \\ a_2 \oplus b_2 \\ a3 \oplus b_3 \end{bmatrix} \text{ ad elementi reali di tipo m×n.}$ $\begin{bmatrix} a_{m-1} \oplus b_{m-1} \\ a_m \oplus b_m \end{bmatrix}$

Tenendo conto dell'osservazione precedente è ben posta la seguente

6.4.7. Definizione. Sia $[\oplus]$: $M(m, n, R) \times M(m, n, R) \to M(m, n, R)$ l'operazione binaria ovunque definita ed interna a M(m, n, R) definita nel modo seguente:

$$\forall \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_{(m-1)} \\ a_m \end{bmatrix}, \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_{(m-1)} \\ b_m \end{bmatrix} \in M(m, n, R) \quad \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_{(m-1)} \\ a_m \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_{(m-1)} \\ b_m \end{bmatrix} := \begin{bmatrix} a_1 \oplus b_1 \\ a_2 \oplus b_2 \\ a_3 \oplus b_3 \\ a_{m-1} \oplus b_{m-1} \\ a_m \oplus b_m \end{bmatrix}$$

Tale operazione (fra due matrici dello **stesso** tipo) viene detta somma di due matrici.

6.4.8. Esempio.
$$\begin{bmatrix} 2 & 3 & 0 \\ -1 & -7 & 4 \end{bmatrix} \begin{bmatrix} \oplus \end{bmatrix} \begin{bmatrix} 5 & -3 & 1 \\ -7 & 0 & -10 \end{bmatrix} = \begin{bmatrix} 7 & 0 & 1 \\ -8 & -7 & -6 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 5 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} \oplus \end{bmatrix} \begin{bmatrix} -4 & -5 & -1 \\ 1 & 1 & 1 \\ 3 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

6.4.9. Definizione. Una *matrice* ad elementi reali di tipo $m \times n$ la diremo *nulla*, e la indicheremo col simbolo $\mathbf{O}_{\mathbf{m} \times \mathbf{n}}$ (o anche, quando il tipo $m \times n$ è chiaro dal contesto, più brevemente con \mathbf{O}) se <u>tutte</u> le sue righe sono uguali alla n-upla nulla (0, 0, 0, ..., 0, 0). Quindi, tutti gli elementi di $\mathbf{O}_{\mathbf{m} \times \mathbf{n}}$ sono nulli.

6.4.11. Definizione. Sia A una matrice ad elementi reali di tipo m×n. Con \underline{A} indicheremo la matrice ad elementi reali di tipo m×n definita nel modo seguente: per ogni indice $i \in \{1, 2, 3, ..., (m-1), m\}$ di riga se $(a_{i1}, a_{i2}, a_{i3}, ..., a_{i(n-1)}, a_{in})$ è la i-esima riga di \underline{A} allora $(-a_{i1}, -a_{i2}, -a_{i3}, ..., -a_{i,(n-1)}, -a_{in})$ è la i-esima riga di \underline{A} . Ovvero, se $\underline{A} = [a_{ij}]_{m \times n}$ e $\underline{A} = [b_{ij}]_{m \times n}$ allora per ogni indice $i \in \{1, 2, 3, ..., (m-1), m\}$ di riga e ogni indice $j \in \{1, 2, 3, ..., (n-1), n\}$ di colonna si ha che e $b_{ij} = -a_{ij}$.

6.4.12. Esempio. Se
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 11 & -4 & -4 & 9 \\ -6 & 0 & 8 & 0 \end{bmatrix}$$
 allora $\underline{A} = \begin{bmatrix} -1 & -2 & -3 & -4 \\ -11 & 4 & 4 & -9 \\ 6 & 0 & -8 & 0 \end{bmatrix}$

Tenendo conto che (R^n, \oplus) è un gruppo abeliano si prova subito che valgono le seguenti proprietà:

(G1)
$$\forall A,B,C \in M(m, n, R)$$

$$(A \oplus B) \oplus C = A \oplus B$$

La somma tra matrici gode della proprietà associativa.

(G2)
$$\exists \mathbf{O}_{m \times n} \in M(m, n, R) : \forall A \in M(m, n, R)$$

$$A \oplus O_{m\times n} = A = O_{m\times n} \oplus A$$

Esiste una particolare matrice, quella nulla, che si comporta da elemento neutro rispetto alla soma.

(G3)
$$\forall A \in M(m, n, R) \exists \in A(m, n, R)$$
:

$$A \oplus \underline{A} = \mathbf{O}_{\mathbf{m} \times \mathbf{n}} = \underline{A} \oplus \underline{A}$$

Per ogni matrice A ne esiste una A che si comporta da simmetrico rispetto alla somma.

(G4)
$$\forall A,B \in M(m, n, R)$$

$$A \oplus B = B \oplus A$$

La somma tra matrici gode della proprietà commutativa.

Abbiamo quindi provato il seguente

- **6.4.13. Lemma.** La coppia $(M(m, n, R), [\oplus])$ è un gruppo abeliano.
- **6.4.14.** Osservazione. Per la proprietà (G6) si ha che la matrice \underline{A} è unica. Tale matrice viene anche detta *matrice opposta* della matrice A e indicata col simbolo (-A).

6.4.15. Osservazione. Siano
$$\alpha \in \mathbb{R}$$
 e $A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_{(m-1)} \\ a_m \end{bmatrix}$ una matrice ad elementi reali di tipo m×n. Per

ogni indice $i \in \{1, 2, 3, ..., (m-1), m\}$ di riga è <u>univocamente</u> determinata in R^n la-nupla $\alpha \otimes a_i$ risultato dell'operazione di prodotto tra il numero reale α e la n-upla a_i . Quindi, è anche

 $\begin{array}{c|c} \alpha\otimes a_1\\ \alpha\otimes a_2\\ \alpha\otimes a_3\\ \\ \alpha\otimes a_{(m-1)}\\ \alpha\otimes a_m \end{array} \ \ \, \text{ad elementi reali di tipo m} \times n \ .$

Tenendo conto dell'osservazione precedente è ben posta la seguente

6.4.16. Definizione. Sia $[\otimes]$: R×M(m, n, R) \rightarrow M(m, n, R) l'operazione binaria così definita:

$$\forall \alpha {\in} \, R \quad \forall \begin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \\ \mathbf{a_{(m-1)}} \\ \mathbf{a_m} \end{bmatrix} {\in} \, M(m,\,n,\,R) \quad \alpha \, [\otimes] \begin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \\ \mathbf{a_{(m-1)}} \\ \mathbf{a_m} \end{bmatrix} := \begin{bmatrix} \alpha \otimes \mathbf{a_1} \\ \alpha \otimes \mathbf{a_2} \\ \alpha \otimes \mathbf{a_3} \\ \alpha \otimes \mathbf{a_3} \end{bmatrix}$$

Tale operazione viene detta prodotto di un numero reale per una matrice.

Tenendo conto che (R^n, \oplus, \otimes) è uno spazio vettoriale reale si prova subito che valgono le proprietà:

$$(PS1) \ \forall \alpha \in R \ , \ \forall A, \ B \in M(m, \ n, \ R) \\ \qquad \alpha[\otimes](A \ [\oplus] \ B) = (\alpha[\otimes]A) \ [\oplus] \ (\alpha[\otimes]B)$$

$$(PS2) \ \forall \alpha, \beta \in R \ , \ \forall A \in M(m, n, R) \\ (\alpha + \beta)[\otimes]A = (\alpha[\otimes]A) \ [\oplus] \ (\beta[\otimes]A)$$

$$(PS3) \ \forall \alpha, \, \beta \in R \ , \, \forall A \in M(m, \, n, \, R) \\ \hspace*{0.5cm} (\alpha\beta)[\otimes]A = \alpha[\otimes](\beta[\otimes]A)$$

$$(PS4) \ \forall A \in M(m, n, R)$$

$$1[\otimes]A = A$$

Ricordando (Lemma 6.4.13) che (M(m, n, R), $[\oplus]$) è un gruppo abeliano, abbiamo il seguente:

6.4.18. TEOREMA. La terna (M(m, n, R), $[\oplus]$, $[\otimes]$) è uno spazio vettoriale reale.