COMPITO B DI CHIMICA DEL 18 SETTEMBRE 2014

Cognome:	Nome:		
Corso Di Laurea:	CFU:	Matricola:	
reazione porta alla formazione di cloruro	o di sodio e cloruro di cromo eide butirrica che reagiscono	eide butirrica (C_4H_8O) ad acido butirrico (C_4 no (III). Bilanciare la reazione con il metoo o con 75.0 mL di acido cloridrico 0.300 M o	do ionico
<i>m</i> =			

2B) Due recipienti contenenti rispettivamente (a) 15.0 g di acido acetico (α = 0.15) in 250 g di acqua e (b) 20.0 g di urea (CH₄N₂O; non elettrolita) in 100 g di acqua vengono posti sotto una campana di vetro a 30°C. Determinare la massa contenuta in ciascuno dei due recipienti (a) e (b) una volta che il sistema ha raggiunto, alla stessa temperatura, lo stato di equilibrio. [A 30°C, P°_{H2O} = 4.17· 10-2 atm]

m(a) = m(b) =

combustione completa; si ottengono 660.1	pari a 84.2 g/mol, contenente solo carbonio e idrogeno, viene sottop g di anidride carbonica, 270.3 g di acqua e una quantità di calore pari a 9 H° _{f(CO2(g))} = –393.51 kJ/mol, determinare la formula molecolare del comp	800 kJ
	H°_{f} =	
4B) In un recipiente di volume costante pressione di 5.00 atm. Avviene la reazione:	pari a 4.00 L, termostatato a 1000 K, viene immesso ossido di carbon	iio alla
Ad equilibrio raggiunto la quantità di carl reazione e la pressione totale misurata nel	$2CO_{(g)} \leftrightarrows C_{(s)} + CO_{2(g)}$ onio nel recipiente è pari a 420 mg. Calcolare la costante di equilibrio k recipiente all'equilibrio.	ζ _c della
realisms s in pressions to take misurate me		

 $K_c =$

P =

5B) Alla temperatura di 25°C, a 600 mL di una soluzione acquosa 0.150 M di acetato di potassio, vengono aggiunti 300 mL di una soluzione acquosa di acido iodidrico 0.300 M. Calcolare: (a) il pH della soluzione risultante e (b) il volume di acqua che bisogna aggiungere alla soluzione risultante affinché il pH aumenti di 0.5 unità. $[K_{a(acido acetico)} = 1.8 \cdot 10^{-5}]$

pH =	V =

6B) Un elettrodo di argento viene immerso in una soluzione di bromato di potassio saturo di bromato di argento. Il potenziale del semielemento così realizzato vale 0.554~V. Noto che il K_{ps} del bromato di argento vale $5.25 \cdot 10^{-5}$, calcolare la concentrazione della soluzione di bromato di potassio e la quantità di elettricità necessaria per ridurre all'elettrodo l'argento presente in 12.0~L di soluzione. (1F = 96500~C/mol)

c =	Q=