☰ Informazioni

Notizie ☰

×

ROSELLA COLOMBA SAMPALMIERI


Nome: Rosella Colomba
Cognome: Sampalmieri
Qualifica: Ricercatore confermato
Settore Scientifico Disciplinare: MAT/05 (Analisi Matematica)
Struttura di afferenza: Dipartimento di Ingegneria e scienze dell'informazione e matematica
Email: rosella.sampalmierigmail.com
Telefono Ufficio: +39 0862434706
Altro telefono: +39 0862433136
Fax Ufficio: +39 0862434703
Home Page personale: http://www.disim.univaq.it/main/home.php?users_username=rosellacolomba.sampalmieri


Insegnamenti tenuti - a.a.

InsegnamentoOrario di ricevimento
Analisi matematica II (I3N - Ingegneria dell'Informazione) Ricevimento presso il mio studio sito presso la sede di Coppito 1, primo piano, corridoio sopra la biblioteca. DATE E ORARI DEL RICEVIMENTO STUDENTI VENGONO' COMUNICATI SUL SITO E-LEARNING NELLA SEZIONE DEL CORSO
Complex variables (I4W - Ingegneria Matematica) Please contact the Teacher by e-mail: rosella.sampalmieri@univaq.it



Curriculum scientifico

(Aggiornato il 12-11-2018)

Link versione stampabile (pdf)

AREA DI RICERCA ATTUALE: equazioni iperboliche alle derivate parziali, in particolare: modelli ibridi per semiconduttori, sistemi non strettamente iperbolici.

ALTRE AREE DI RICERCA: convergenze in spazi di grafi di funzioni. Metodi variazionali applicati allo studio delle geodetiche sulle varietà Lorentziane, equazioni dalla teoria dei materiali viscoelastici con memoria.

PUBBLICAZIONI

Di Michele, F., Mei, M., Rubino, B., & Sampalmieri, R.  Stationary Solutions for a new hybrid quantum model for semiconductors with discontinuous pressure functional and relaxation time.  Accettato per la publicazione in  Mathematics and Mechanics of Solids

 

 Di Michele, F., Mei, M., Rubino, B., & Sampalmieri, R.  Existence  and uniqueness of solutions for a stationary hybrid quantum hydrodynamical model with general pressure functional. Sottomesso per la publicazione a Computational and Applied Mathematics


Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics. J. Differential Equations 263 (2017), no. 3, 1843–1873.


Di Michele, Federica; Rubino, Bruno; Sampalmieri, Rosella A steady-state mathematical model for an EOS capacitor: the effect of the size exclusion. Netw. Heterog. Media 11 (2016), no. 4, 603–625. 82D37 (35J25)



Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella Stationary solutions to hybrid quantum hydrodynamical model of semiconductors in bounded domain. Int. J. Numer. Anal. Model. 13 (2016), no. 6, 898–925.


Djoufedie, George Noel; Felaco, Elisabetta; Rubino, Bruno; Sampalmieri, Rosella Convergence of Lax-Friedrichs and Godunov schemes for a nonstrictly hyperbolic system of conservation laws arising in oil recovery. Contin. Mech. Thermodyn. 28 (2016), no. 1-2, 331–349. 65M06 (65M12 76S05)



 Felaco, Elisabetta; Rubino, Bruno; Sampalmieri, Rosella Global existence to the Cauchy problem for hyperbolic conservation laws with an isolated umbilic point. Quart. Appl. Math. 71 (2013), no. 4, 629–659.


Donatelli, Donatella; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors. J. Differential Equations 255 (2013), no. 10, 3150–3184. 35L50 (35A01 35A02 35A09 35B40 35L60 35L65 82D37)



 Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinet. Relat. Models 5 (2012), no. 3, 537–550.35L60 (35L50 35L65 76R50 82D37)

 

Kirova, Yordanov,V. Georgiev, B. Rubino, R. Sampalmieri,Asymptotic behaviour for linear and nonlinear elastic waves in materials with memoryJournal of Non-Crystalline Solids, 354(2008), 4126-4137. 



Georgiev, Vladimir; Rubino, Bruno; Sampalmieri, Rosella Global existence for elastic waves with memory. Arch. Ration. Mech. Anal. 176 (2005), no. 3, 303–330. 35Q72 (35B40 35D05 35L70 74D10 74H20 74J30)


Sampalmieri, R. Stability of a problem from viscoelasticity. C. R. Acad. Bulgare Sci. 55 (2002), no. 12, 11–16. 35Q72 (35B35 35B45 74D10)



Giannoni, Fabio; Piccione, Paolo; Sampalmieri, Rosella On the geodesical connectedness for a class of semi-Riemannian manifolds. J. Math. Anal. Appl. 252 (2000), no. 1, 444–476. 58E10 (53C22)


Antonacci, Flavia; Germinario, Anna; Sampalmieri, Rosella Light rays having extreme points with the same spatial coordinates. Differential Geom. Appl. 10 (1999), no. 2, 161–178. 58E10 (58E05)




 Antonacci, Flavia; Sampalmieri, Rosella Closed geodesics on compact Lorentzian manifolds of splitting type. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 3, 447–462. 58E10 (53C22 53C50)




 Sampalmieri, Rosella Weak solutions of a conservation law with memory in several space variables. NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 1, 99–116. 35L67 (35D05 35F25)




 Antonacci, Flavia; Sampalmieri, Rosella Some results about geodesics on Lorentzian manifolds of splitting type. Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 1, 571–577. 



 Sampalmieri, Rosella Weak solutions of a conservation law with memory. Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, 393–414. 35L65 (35D05 45K05)




 Antonacci, Flavia; Sampalmieri, Rosella On a class of geodesically connected Lorentzian manifolds. J. Differential Equations 138 (1997), no. 1, 171–187.58E10 (53C50)




 Piccione, Paolo; Sampalmieri, Rosella Geodesical connectedness of compact Lorentzian manifolds. Dynam. Systems Appl. 5 (1996), no. 4, 479–502. (Reviewer: Addolorata Salvatore) 58E10 (53C22 53C50 58E05)



 Piccione, Paolo; Sampalmieri, Rosella Attouch-Wets convergence and Kuratowski convergence on compact sets. Comment. Math. Univ. Carolin. 36 (1995), no. 3, 551–562. (Reviewer: Ilya S. Molchanov) 54C35 (49J52)




 Sampalmieri, Rosella Kuratowski convergence on compact sets. Atti Sem. Mat. Fis. Univ. Modena 40 (1992), no. 2, 381–390.


 Myjak, J.; Sampalmieri, R. On the porosity of the set of ω-nonexpansive mappings without fixed points. Proc. Amer. Math. Soc. 114 (1992), no. 2, 357–363.  47H09 (47H04 47H10)