Nome: Francesco
Cognome: D'Annibale
Qualifica: Ricercatore a tempo determinato
Settore Scientifico Disciplinare: ICAR/08 (Scienza Delle Costruzioni)
Struttura di afferenza: Dipartimento di Ingegneria Civile, Edile - Architettura, Ambientale
Email: francesco.dannibaleunivaq.it
Telefono Ufficio: 0862434532
Fax Ufficio: +39 0862434548

Insegnamenti tenuti - a.a.

InsegnamentoOrario di ricevimento
Scienza delle Costruzioni (canale B) (I3D - Ingegneria Industriale) Mercoledý 18:00 - 20:00

Curriculum scientifico

(Aggiornato il 04-09-2018)

Link versione stampabile (pdf)

First Name: Francesco
Surname: D’Annibale
Nationality: Italian
Academic Address
University of L’Aquila, Via G. Gronchi, n. 18 second floor, room M&MoCS
67100, L’Aquila, Italy
  • 2010 - 2014 Post-Doc at Dipartimento di Ingegneria Civile, Edile-Architettura e Ambientale (DICEAA). Title of the Research: Danneggiamento a fatica di strutturemultistrato (Fatigue damage in multi-layered structures).
  • 2014 - 2016 Post-Doc at International Research Center on Mathematics and Mechanics of Complex System (M&MoCS), University of L’Aquila. Title of the Research:Dinamica e stabilità di sistemi Piezo-Elettro-Meccanici (PEM) sollecitati da azioni non conservative (Dynamics and stability of Piezo-Electro-Mechanical(PEM) systems under nonconservative actions).
  • 2016 - Present Researcher at Dipartimento di Ingegneria Civile, Edile-Architettura e Ambientale (DICEAA) and International Research Center on Mathematics and Mechanics of Complex Systems (M&MoCS), University of L’Aquila.
  • Linear and nonlinear oscillations of one-dimensional, elastic, structural systems
  • Passive control of elastic systems via added piezoelectric devices
  • Stability and nonlinear oscillations of elastic systems under conservative and nonconservative loads
  • Perturbation methods for multiple-bifurcations analysis of multi-parameter dynamical systems
  • Local and nonlocal damage constitutive models
  • Fatigue damage and wear constitutive modeling for multi-layered structures
  • Dynamic approach and numerical algorithms within the framework of the Generalized Beam Theory



  1. Di Nino, S., D’Annibale, F., Luongo, A. (2017). A simple model for damage analysis of a frame- masonry shear-wall system, International Journal of Solids and Structures, 118, 119-134, doi: 10.1016/j.ijsolstr.2017.09.007.
  2. Luongo, A., D’Annibale, F. (2017). Invariant subspace reduction for linear dynamic analysis of finite-dimensional viscoelastic structures, Meccanica, 52(13), 3061-3085, doi: 10.1007/s11012-017- 0741-y.
  3. Ferretti, M., D’Annibale, F., Luongo, A. (2017). Flexural-torsional flutter and buckling of braced foil beams under a follower force, Mathematical Problems in Engineering, art. no. 2691963, doi: 10.1155/2017/2691963.
  4. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F. (2017). Pantographic lattices with non- orthogonal fibres: Experiments and their numerical simulations, Composites Part B: Engineering, 118, 1-14, doi: 110.1016/j.compositesb.2017.02.039.
  5. D’Annibale, F. (2016). Piezoelectric control of the Hopf bifurcation of Ziegler’s column with non- linear damping, Nonlinear Dynamics, 86(4), 2179-2192, doi: 10.1007/s11071-016-2866-2.
  6. Luongo, A., D’Annibale, F., Ferretti, M. (2016). Hard loss of stability of Ziegler’s column with nonlinear damping, Meccanica, 51(11), 2647-2663, doi: 10.1007/ s11012-016-0471-6.
  7. D’Annibale, F., Ferretti, M., Luongo, A. (2016). Improving the linear stability of the Beck’s beam by added dashpots, International Journal of Mechanical Sciences, 110, 151-159, doi: 10.1016/ j.ijmecsci.2016.03.008.
  8. Luongo, A., D’Annibale, F. (2016). Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic Beck’s beam, Mathematics and Mechanics of Solids, 22(6), 1347-1365, doi: 10.1177/ 1081286516632381.
  9. Luongo, A., Ferretti, M., D’Annibale, F. (2016). Paradoxes in dynamic stability of mechanical systems: investigating the causes and detecting the nonlinear behaviors, SpringerPlus, 5(60), doi: 10.1186/s40064-016-1684-9.
  10. D’Annibale, F., Rosi, G., Luongo, A. (2016). Piezoelectric control of Hopf bifurcations: a nonlinear discrete case study, International Journal of Non-Linear Mechanics, 80, 160-169, doi: 10.1016/ j.ijnonlinmec.2015.09.012.
  11. D’Annibale, F., Rosi, G., Luongo, A. (2015). Controlling the Limit-Cycle of the Ziegler Column via a Tuned Piezoelectric Damper, Mathematical Problems in Engineering, vol. 2015, Article ID 942859, 9 pages, doi:10.1155/2015/942859.
  12. D’Annibale, F., Rosi, G., Luongo, A. (2014). On the failure of the ‘Similar Piezoelectric Control’ in preventing loss of stability by nonconservative positional forces, Zeitschrift für Angewandte Mathematik und Physik, 66(4), 1949-1968, doi: 10.1007/s00033-014-0477-7.
  13. D’Annibale, F., Rosi, G., Luongo, A. (2014). Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces, Meccanica, 50(3), 825-839, doi: 10.1007/s11012-014-0037-4.
  14. Taig, G., Ranzi, G., D’Annibale, F. (2014). An unconstrained dynamic approach for the Generalised Beam Theory, Continuum Mechanics and Thermodynamics, 27(4), 879-904, doi: 10.1007/s00161- 014-0358-5.
  15. Luongo, A., D’Annibale, F. (2014). On the destabilizing effect of damping on discrete and continuous circulatory systems, Journal of Sound and Vibration, 333(24), 6723-6741, doi: 10.1016/j.jsv. 2014.07.030.
  16. Luongo, A., D’Annibale, F. (2014). A paradigmatic minimal system to explain the Ziegler paradox, Continuum Mechanics and Thermodynamics, 27(1-2), 211-222, doi: 10.1007/s00161-014-0363-8.
  17. Piccardo, G., D’Annibale, F., Zulli, D. (2014). On the contribution of Angelo Luongo to Mechanics: in honour of his 60th Birthday, Continuum Mechanics and Thermodynamics, 27(4), 507-529, doi: 10.1007/s00161-014-0388-z.
  18. Luongo, A., D’Annibale, F. (2013). Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads, International Journal of Non-Linear Mechanics, 55, 128- 139, doi: 10.1016/j.ijnonlinmec.2013.05.007.
  19. D’Annibale, F., Luongo, A. (2013). A damage constitutive model for sliding friction coupled to wear, Continuum Mechanics and Thermodynamics, 25(2-4), 503-522, doi: 10.1007/s00161-012-0283-4.
  20. Luongo, A., D’Annibale, F. (2012). Bifurcation analysis of damped visco-elastic planar beams under simultaneous gravitational and follower forces, International Journal of Modern Physics B, 26(25), art. no. 1246015, doi: 10.1142/S0217979212460150.
  21. Luongo, A., D’Annibale, F. (2011) Linear stability analysis of multiparameter dynamical systems via a numerical-perturbation approach, AIAA Journal, 49(9), 2047-2056, doi: 10.2514/1.J051023.


D’Annibale, F., (2010). Modelli costitutivi ed analisi di strutture soggette a danno ed usura percontatto quasi-statico (Constitutive models and analysis of structures subjected to damage andwear due to quasi-static friction contact), Università degli Studi dell’Aquila.


Luongo, A., D’Annibale, F. (2015). Linear and nonlinear damping effects on the stability of theZiegler column, in Belhaq, Mohamed (Editor), Springer Proceedings in Physics Vol. 168: Structural Nonlinear Dynamics and Diagnosis, Springer International Publishing Switzerland, ISBN: 978-3-319-19850-7, doi: 10.1007/978-3-319-19851-4 


Issue Editor of the S.I. Nonlinearities, Bifurcation and Instabilities, Continuum Mechanics and Thermodynamics, 27(4-5), 2015. 


  • PRIN 2007, Title of the project: Modelli analitici e sperimentali per l’analisi dinamica e di stabilitàdelle strutture nonlineari, Scientific Coordinator: Prof. Fabrizio Vestroni, Financed by the Italian Ministry of Education, University and Research.
  • PRIN10-11, Title of the project: Dinamica stabilità e controllo di strutture flessibili, ScientificCoordinator: Prof. Angelo Luongo, Financed by the Italian Ministry of Education, University and Research. 


  • Nonlinear Dynamics
  • International Journal of Non-Linear Mechanics
  • Archive of Applied Mechanics
  • Meccanica
  • Mathematics and Mechanics of Solids
  • Continuum Mechanics and Thermodynamics
  • Shock and Vibration
  • International Journal of Mechanical Sciences
  • Mathematical Reviews